
Dependent Merges and First-Class Environments
Jinhao Tan #

The University of Hong Kong, China

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
In most programming languages a (runtime) environment stores all the definitions that are available to program-
mers. Typically, environments are a meta-level notion, used only conceptually or internally in the implementation
of programming languages. Only a few programming languages allow environments to be first-class values,
which can be manipulated directly in programs. Although there is some research on calculi with first-class
environments for statically typed programming languages, these calculi typically have significant restrictions.

In this paper we propose a statically typed calculus, called Ei, with first-class environments. The main
novelty of the Ei calculus is its support for first-class environments, together with an expressive set of operators
that manipulate them. Such operators include: reification of the current environment, environment concatenation,
environment restriction, and reflection mechanisms for running computations under a given environment. In Ei

any type can act as a context (i.e. an environment type) and contexts are simply types. Furthermore, because
Ei supports subtyping, there is a natural notion of context subtyping. There are two important ideas in Ei that
generalize and are inspired by existing notions in the literature. The Ei calculus borrows disjoint intersection
types and a merge operator, used in Ei to model contexts and environments, from the λi calculus. However,
unlike the merges in λi, the merges in Ei can depend on previous components of a merge. From implicit calculi,
the Ei calculus borrows the notion of a query, which allows type-based lookups on environments. In particular,
queries are key to the ability of Ei to reify the current environment, or some parts of it. We prove the determinism
and type soundness of Ei, and show that Ei can encode all well-typed λi programs.

2012 ACM Subject Classification Theory of computation→ Type theory

Keywords and phrases First-class Environments, Disjointness, Intersection Types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.21

Funding Hong Kong Research Grant Council projects number 17209520 and 17209821 sponsored this work.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

In most programming languages, (runtime) environments are used to store all the available definitions
at a given point in a program. Typically, an environment is a dictionary that maps variable names to
values. However, environments are normally a meta-level concept, which does not have any syntactic
representation in source programs. Environments may be used internally in the implementation of
programming languages. For example, in implementing functional languages, closures are often used
to keep the lexical environment of a function around. However, it is impossible for programmers to
write directly a closure or manipulate environments explicitly.

First-class environments [18, 23, 24, 29, 36], are environments that can be created, composed, and
manipulated at runtime. In programming languages with first-class environments, programs have
an explicit syntactic representation for environments that enables them to be first-class values. As
argued by Gelernter et al. [18], with first-class environments, the distinction between declarations
and expressions can be eliminated. Furthermore many programming language constructs – including
closures, modules, records and object-oriented constructs – can be modelled with first-class envir-
onments. However, only a few programming languages allow environments to be first-class values.
These languages are mainly dynamically typed languages such as dialects of Lisp [18] and the R

© Jinhao Tan and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 21; pp. 21:1–21:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jhtan@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Dependent Merges and First-Class Environments

language [17]. Typically, operations on environments include: reification (transforming environments
into data objects), reflection (treating data objects as environments), environment restriction (returning
part of an environment), and environment composition/concatenation. While dynamically typed
languages with first-class environments give users high flexibility in manipulating environments,
several runtime type errors are unavoidable due to the absence of static typing.

Compared with work on dynamically typed languages, there is much less research on statically
typed languages with first-class environments [44, 45, 47]. In these works, environments as first-class
values have a special kind of type which is called an environment type. Although static typing prevents
some of the runtime errors, subtyping is not included in existing type systems with environment
types. At the term level, there are two constructs for environments: one is an evaluation operation
eJaK that evaluates the expression a under an environment e, and the other is an operator returning the
current environment. While these two constructs model importing and exporting of environments
respectively, there are no facilities for concatenation or restriction of environments in these calculi.

In this paper we propose a statically typed calculus, called Ei, with first-class environments.
The main novelty of the Ei calculus is its support for first-class environments with an expressive
set of operators that manipulate first-class environments. In Ei, both reflection mechanisms for
running computations under a given environment and reification of the current environment are
supported. Moreover, compared with previous work on typed calculi with first-class environments,
environment concatenation and environment restriction are allowed. In Ei, types and contexts (i.e.
environment types) are completely unified. That is, any type can act as a context and contexts are
simply types. Unlike previous calculi, Ei also supports subtyping and has a natural notion of subtyping
of environments. In Ei, users can benefit from static typing for handling type errors at compile-time,
while still having various flexible mechanisms to manipulate environments.

In order to model environments, the Ei calculus borrows disjoint intersection types and the merge
operator from the λi calculus [32]. The novelty in Ei is to additionally use intersection types to model
environment types (or contexts), and disjointness to model disjointness/uniqueness of variables in
an environment. Correspondingly, in Ei, the merge operator enables constructing and concatenating
environments. Moreover, unlike λi, the merges in Ei can depend on previous components of a
merge. In other words, merges in Ei are dependent (note that the dependency in a merge is term-level
dependency, and it should not be confused with dependent types). Unifying contexts and types
enables type information flowing from the left branch to the right branch in a merge, such that the
type of the left branch becomes part of the context of the right branch. Consequently, with reification,
the right branch of a merge can construct an expression based on the left branch of a merge. For
example, the following program (with syntactic sugar)

{x = 1} # {y = x}

is well-typed in Ei. Here y in the right branch can access x and build a value under the environment
{x = 1}. The merge will be evaluated to {x = 1} # {y = 1}. Dependent merges are useful for modelling
dependent declarations, which are not expressible in λi since a field in a single record cannot access
the field in a previous record in a merge.

Instead of looking up values by names as in traditional lambda calculi, the Ei calculus borrows the
notion of a query, which enables type-based lookups on environments, from implicit calculi [12,31,46].
In implicit calculi, queries are used to query implicit environments by type. However, in Ei, queries
are applied directly to runtime environments instead, and they are key to the ability of Ei to reify the
current environment, or some parts of it. Effectively, a query can synthesize the current context (in
typing) and the current environment (during reduction). With type annotations, queries can choose
part of the environment based on those annotations, modelling environment restriction.

In our work, we prove the determinism and type soundness of Ei, and show that Ei can encode all

J. Tan, B. C. d. S. Oliveira 21:3

λi programs. The Ei calculus and all the proofs presented in this paper have been formalized in the
Coq theorem prover [9]. In summary, the contributions of this paper are:

Dependent merges as first-class environments: We propose the novel notion of dependent
merges, which allow dependencies appearing in merges. With dependent merges, dependent
declarations and first-class environments can be modelled easily in a natural way.
The Ei calculus: We present a statically typed calculus called Ei with support for creation,
reification, reflection, concatenation and restriction of first-class environments. In addition, we
study an extension with fixpoints (shown in the appendix). Both calculi are deterministic and type
sound.
Encoding of the λi calculus: We show that Ei can encode the type system of the λi [32] via a type-
directed translation. In other words, standard variables, lambda abstractions, and non-dependent
merges can be fully encoded in Ei.
Coq formalization: All the results presented in this paper have been formalized in the Coq
theorem prover and they are available in the artifact associated to this paper:

https://github.com/tjhao/ecoop2023

2 Overview

This section gives an overview of our work. We start with some background on the merge operator,
first-class environments and program fragments. Then we discuss challenges of modelling first-class
environments as merges and finally we discuss the key ideas in our work.

2.1 Background

The merge operator and disjoint intersection types. The original non-dependent merge
operator (denoted here by , ,) was firstly introduced by Reynolds [38] and later refined by Dunfield
[15]. Merges add expressiveness to terms, enabling constructing values that inhabit intersection types.
Essentially, with the merge operator, values are allowed to have multiple types. For example, the
following program is valid:

let x : Bool & Int = true ,, 1 in (not x, succ x)

In the program above, the variable x has types Bool and Int, encoded by the intersection type
Bool & Int. At the term level, x is created with the merge operator and can be regarded as either a
boolean or an integer when used. For instance, in the program above there are two uses of x, one
as a boolean (as the argument to not) and one as an integer (as the argument to succ). A language
with the merge operator is able to extract the value of the right type from merges. In many classical
systems with intersection types, but without the presence of the merge operator, the type Bool & Int
cannot be inhabited and the program above is not expressible [34].

An important issue that the merge operator introduces is ambiguity. What happens if merges
contain multiple values of the same type? For example, we could have (1,,2):Int, but if this is
allowed, then it could result in either 1 or 2. To address the ambiguity problem, Oliveira et al. [32]
presented the λi calculus, which imposed a restriction where only merges of values that have disjoint
types are accepted (we use A ∗ B to represent that A is disjoint with B). In this way, ambiguous
programs such as 1,,2 are rejected since Int is not disjoint with itself. However, Bool and Int are
disjoint, and thus true,,1 is a well-typed expression.

As Dunfield [15] argued, with the merge operator, many language features such as dynamic
typing, multi-field records, and operator overloading can be easily encoded. After that, several
non-trivial programming language features, including dynamic mixins [2], first-class traits [5], nested

ECOOP 2023

https://github.com/tjhao/ecoop2023

21:4 Dependent Merges and First-Class Environments

Operator Description

export Exports/reifies the full current environment.

E\I
Returns a new restricted environment that only contains the
identifiers in I from the environment E.

import(T1, T2) Evaluates T1 to be an environment E1, and uses E1 to evaluate T2.

import(I, T1, T2)
Evaluates T1 to be an environment E1, checks that a set of
identifiers I are defined in E1, then uses E1 to evaluate T2.

E1, E2 Composes/concatenates two environments.
Table 1 Summary of common operators on environments. E denotes an environment, I denotes a set of

identifiers, and T1 and T2 denote terms in the language.

composition [6, 22] have been enabled with the help of the merge operator and disjoint intersection
types. These features provide the foundations for compositional programming [51], which is a
programming paradigm that enables a simple and natural solution to the Expression Problem [49] and
other modularity problems. Compositional programming is realized in the CP language [51], which
has been used to demonstrate the expressive power of the paradigm.

First-class environments. Normally, environments are not a syntactic entity of a programming
language. Instead, environments exist implicitly at the meta-level for defining formal semantics
and implementing languages. However, some dynamically typed languages, including dialects of
Lisp [18] or the R language [17], include support for first-class environments. There is a line of
research work on first-class environments for dynamically typed languages [18, 23, 24, 29, 36]. First-
class environments provide a lot of expressive power, and they are used to model many other language
constructs. With first-class environments, it is possible to model closures, modules, records or object-
oriented constructs [18]. Moreover, it is also possible to model declarations directly, eliminating the
need to distinguish between declarations and expressions.

To allow environments manipulated by not only compilers or interpreters but also programmers, a
form of reification and reflection of environments is needed. Reification transforms environments
into data objects and reflection enables data objects to be treated as environments [23, 24]. While
formalizations differ, generally speaking, environments are formalized as a mapping from variables
to data objects, which can be manipulated at runtime. We summarize typical supported operators to
manipulate environments [36] in Table 1 (with notations slightly changed).

Work on first-class environments for typed languages [44, 45, 47] comes with significant restric-
tions compared to what is supported in dynamically typed languages. In these calculi, types and
environment types are defined such that environment types are a special kind of type. The definition of
types is A, B ::= A→ B | . . . | E, and each environment type E has the form of {x1 : A1, . . . , xm : Am}

where Ai (1 ≤ i ≤ m) is a type and each variable xi must be distinct (or disjoint) with each other.
Environment types encode exactly the normal typing context, which is a set that consists of typing
assumptions xi : Ai. Correspondingly, an environment has the form of {a1/x1, . . . , am/xm} that binds
variables xi with terms ai [44, 47]. There are two constructs related to environments:

The first construct returns the current environment which acts similarly to export.
The second construct is an evaluation operation eJaK that evaluates the expression a under an
environment e. Note that, this operation is similar to import(T1, T2) in Table 1 (where T1
corresponds to e and T2 corresponds to a).

With these two constructs, one can create an environment at run-time and use it for evaluation.
However, types are not totally unified with environment types in this setting, which results in special

J. Tan, B. C. d. S. Oliveira 21:5

treatment of environments. For example, the expression e in eJaK can only be an environment. To
avoid runtime errors, the typing rule for eJaK restricts the type that e has to be an environment type.
Existing type systems with environment types do not consider subtyping. At the term level, though
environments can be computed by evaluation under other environments and function applications,
concatenation or restriction of environments are not supported. Therefore, an environment with a
larger/smaller width cannot be constructed on the fly either. In short, there is no subtyping and the
operations that are supported in dynamically typed languages in Table 1 are not fully supported in
typed calculi with first-class environments.

Program fragments and separate compilation. To motivate our work we will show how first-
class environments can be helpful to model a simple form of modules. Our form of modules is inspired
by Cardelli’s [7] program fragments. Here we first introduce the notion of program fragments, and in
Section 2.3 we will see how we can model program fragments in Ei.

A program fragment, or module, is a syntactically well-formed expression where free variables
may occur [7]. Separate compilation decomposes a program into program fragments that can be
typechecked and compiled separately. A program fragment may contain free variables. However, if
the required interface that contains adequate type information is specified, then the types of the free
variables can be found (without any concrete implementation). Thus, the typechecking of a program
fragment can still be carried out separately.

In a conventional calculus, such as the simply typed lambda calculus (STLC), we express
abstractions over a variable annotated with a type. However, there are no facilities for abstracting
over an interface that may consist of multiple (nested) type assumptions. In other words, the STLC is
not powerful enough to model separate compilation.

Cardelli [7] proposed a calculus of program fragments for the STLC, and specified high-level
abstractions for modules and interfaces. In Cardelli’s framework, interfaces are interpreted as
typing contexts that are external to the language. A module that may require an interface/context is
represented as a binding judgment E ⊢ d ∴ S , where E is a context, d a list of definitions, S a list of
type declarations. Take the following modules from Cardelli as an example:

module
import nothing
export x:Int
begin
x : Int = 3

end.

module
import x:Int
export f:Int → Int, z:Int
begin
f : Int → Int = λ(y:Int).y+x
z : Int = f(x)

end.

These two modules can be modelled as two binding judgments:

∅ ⊢ (x : Int = 3) ∴ (x : Int)

x : Int ⊢ (f : Int→ Int = λ(y : Int).y + x, z : Int = f (x)) ∴ (f : Int→ Int, z : Int)

A module is encoded as a list of definitions d, with an import list modelled as a context E and an
export list as type declarations S . In the second module, z relies on f. To model such dependency, the
binding judgment E ⊢ d ∴ S is designed to be dependent: each component depends on its previous
components in d, in the sense that every free variable in this component can refer to its corresponding
type. To check whether z : Int = f (x) is matched by z : Int, the type declaration f : Int → Int is
appended to the original context x : Int to be a type assumption. In this way, the second binding
judgment can be checked separately since each variable can access sufficient type information.

Though each binding judgment can be separately compiled to a self-contained entity called a
linkset, user-defined abstractions cannot be expressed in Cardelli’s work, since a binding judgment

ECOOP 2023

21:6 Dependent Merges and First-Class Environments

itself is a meta-level notion that cannot be created by programmers. In our work, we also regard
interfaces as typing contexts. However, we unify typing contexts and types, and there are first-class
constructs that abstract over a type/interface. We will discuss our ideas in detail in Section 2.3.

2.2 Limitations of Non-Dependent Merges

As Section 2.1 argued, both the (non-dependent) merge operator and first-class environments are
useful to model a variety of other language constructs. Some of these language constructs can even
be modelled by both merges or first-class environments. Given the overlap between merges and
first-class environments it is reasonable to try to unify them, to obtain a more powerful model of
statically typed languages with first-class environments. Our goal is to use merges to model first-class
environments. However, non-dependent merges in existing calculi such as λi are inadequate for this
purpose. This section discusses the limitations of non-dependent merges that are addressed by us.

No support for reification and reflection of environments. Intersection types and the merge
operator are powerful tools that enable many language features, one of which is multi-field records [40].
In fact, multi-field record types can be turned into an intersection of single-field record types:

{l1 : A1, . . . , ln : An} ≡ {l1 : A1}& · · · & {ln : An}

Recall the syntax of conventional typing contexts: ΓF · | Γ, x : A. A typing context is a list of pairs
that bind variables with types. If we view variables as labels, typing contexts can be encoded as
multi-field records, which are further desugared to intersections of single-field record types. Similarly,
at the term level, a multi-field record is expressed as a merge of single-field ones:

{l1 = e1, . . . , ln = en} ≡ {l1 = e1} , , . . . , , {ln = en}

For example, {x = 2, y = 4} is encoded as {x = 2} , , {y = 4}. In calculi with a merge operator, merges
are always first-class expressions and thus they can be passed to functions.

However, in previous calculi with the merge operator [15, 32, 38], merges are not used to model
environments. Therefore, there are no reification and reflection facilities for environments in those
calculi. Furthermore, intersection types are not used to model contexts, and there is no construct that
enables running some computation under a local environment. In short, previous calculi with the
merge operator support concatenation, but they do not support other operations in Table 1.

No dependent merges. An important limitation of merges in previous work with respect to
environments is that they cannot be dependent. Many programming languages, as well as Cardelli’s
program fragments, support declarations such as:

let x = 2
let y = 4

which allows several declarations to be associated with expressions. For the declarations above, we
can easily model them as a (non-dependent) merge of two single field records:

{x = 2},,{y = 4}

where variables x and y are encoded as field names (or labels), and the values assigned to variables
are modelled as record fields.

The previous declarations are non-dependent, in the sense that the expression assigned to y does
not refer to x. However, in practice many declarations are dependent, where the current declaration
relies on previous ones. For instance, fairly often we may have a program:

J. Tan, B. C. d. S. Oliveira 21:7

let x = 2
let y = x + x
let main = x + y

where y depends on x and main depends on both y and x. The traditional non-dependent merge
operator cannot capture such cases. To be concrete, consider the typing rule for merges from λi [32]:

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A ∗ B

Γ ⊢ e1 , , e2 ⇒ A & B
Typ-merge

Here A ∗ B expresses that A and B are disjoint types. For typing a merge e1 , , e2, the typing context
for the right branch e2 is Γ and does not contain any type information about the left branch e1. When
typing e2, the type of e1 is never used during the typing procedure. As a result, e2 cannot be built
by referring to e1. Moreover, to cooperate with the static semantics, the two branches of e1 , , e2

are evaluated separately without dependency involved in the dynamic semantics of λi. That is, the
environment for evaluating e2 does not contain the evaluation result of e1.

The incapacity of encoding dependent declarations as first-class expressions exposes that λi is not
able to fully model module-related language features. Since dependent definitions/declarations often
occur in a module, as shown in our discussion on program fragments in Section 2.1.

2.3 Key Ideas

In this work, we utilize the merge operator together with new constructs to enable dependent merges
and first-class environments. We concretize these ideas in a new calculus called Ei. The key ideas of
our work are discussed next.

Typing contexts as types. In Ei the typing context in the typing judgment is a type instead of an
association list. Our grammar for both types and contexts is:

A, B,ΓF Int | Top | A→ B | A & B | {l : A}

A typing assumption x : A in conventional calculi is modelled as a record type, and the intersection of
two types plays a similar role to the concatenation of two association lists. However, the contexts in
our work are not restricted to intersections of record types. In fact, any type (e.g., Int) defined in the
syntax of Ei can be a typing context. If a context consists only of Top (the top type), then there is
no type information in this context, which corresponds to an empty association list. As we will see,
viewing typing contexts as types opens up the possibility of creating interesting language features.

Unifying environments and expressions. Just as typing contexts are types in Ei, environments
in the reduction semantics are just values instead of association lists which bind variable names to
values. Hence, environments are first-class in our setting. The top value ⊤ is used to model the
empty environment. A merge of two values can be viewed as concatenation of two environments. For
example, the merge {x = 1} # {y = 2} is a valid environment that binds 1 and 2 to x and y respectively.
In Ei, we denote the merge operator by a single comma (#) to follow the notation conventionally used
in programming languages to denote the concatenation of two environments. With record projection,
the value bound to a label can be accessed. Note that unifying environments and values and viewing
variables as labels means that extra syntax (or data structures) for environments is not needed. This is
different from previous work on typed calculi with first-class environments where an explicit notion
of environments is introduced [44, 45, 47].

In Ei, we have two constructs to support reification (or exporting) and reflection (or importing) of
environments. For reification, we employ the query construct ?. The query construct is inspired by

ECOOP 2023

21:8 Dependent Merges and First-Class Environments

the implicit calculus [12], where queries are used to query implicit environments by type. In Ei we
apply queries directly to runtime environments instead, whereas in the implicit calculus, access to the
regular environments is done conventionally using named variables. The typing rule for ? is simply:

Γ ⊢ ? ⇒ Γ

i.e. the query ? synthesizes the current context. For example, {x : Int} ⊢ ?.x ⇒ Int is valid. Here ?
obtains the current environment and accesses the field x.

Regarding the reflection of environments, there is a construct e1 ▷ e2 that is called box in Ei. In a
box, e2 is assigned an expression e1, which is evaluated to be a value that acts as an environment for
evaluating e2. Take {x = 1 + 1} ▷ ?.x + 1 as an example. The expression {x = 1 + 1} is given as the
environment to ?.x + 1. Then {x = 1 + 1} is evaluated to {x = 2}, under which ?.x + 1 is evaluated to
3. The box construct can be seen as the inverse operator of the query, since ? ▷ e is equivalent to e
in the sense that ? exports the full environment by default. Allowing e1 in the box e1 ▷ e2 to be any
well-typed expression instead of a value adds expressiveness to reflection. For example, environment
injection can be encoded as (? # v) ▷ e where v is added to the original environment for e locally.

In Ei, type annotations play a role in information hiding. For example, for a merge with an
annotation ({x = 1} # {y = 2}) : {x : Int}, only {x = 1} is visible. Type annotations provide a mechanism
to enable restriction, since they are able to prevent visibility of certain values. Since environments are
values in our setting, type annotations can seal the environment, such that only components named
in the type are accessible. Therefore, reification and reflection are type-directed in Ei. With type
annotations, users can choose part of the environment that they desire. In summary, Ei can essentially
model all the operations on environments in Table 1 with the following expressions:

? reifies the entire environment;
? : A obtains part of the environment that has type A;
e1 ▷ e2 evaluates e1 to an environment and uses that to evaluate e2 under that environment;
(e1 : A) ▷ e2 evaluates e1, but restricts the resulting environment to A and uses that to evaluate e2;
e1 # e2 concatenates two environments e1 and e2.

Dependent merges. To model dependent declarations, the merges in our work are dependent. The
right branch can refer to the type of the left branch. The typing rule for dependent merges is:

Γ ⊢ e1 ⇒ A Γ& A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B
Typ-dmerge

Modelling typing contexts as types enables type information flowing from the left branch to the right
branch in a merge. Specifically, for e1 # e2, the type of e1 is added into the current context such that e2

synthesizes a type under the intersection type Γ& A.
Suppose that the current context Γ is a subtype of some type B, with type annotation, ? : B exports

B from Γ. With the query construct, a dependent declaration can be encoded as a dependent merge:

{x = 2} # {y = (?:{x:Int}).x + (?:{x:Int}).x}

which has type {x : Int}& {y : Int}. The annotated query ? : {x : Int} exports {x : Int} from the context,
and projection (? : {x : Int}).x infers the type Int. Note that Ei is meant as a minimal core calculus and
it is not built with convenience in mind. So the expression above is more cumbersome than what a
programmer would expect to write in a source language. With some basic support for type inference
and syntactic sugar in a source language, we could write instead:

{x = 2} # {y = ?.x + ?.x}

or even:

J. Tan, B. C. d. S. Oliveira 21:9

{x = 2} # {y = x + x}

In Section 5 we show how some of this syntactic sugar and inference can be achieved. For readability
purposes, in the following examples, we will take the liberty to use a more lightweight syntax for the
examples written in Ei as well.

In general, dependent declarations can be modelled as a merge of expressions e1 # · · ·#en, where the
type information accumulates from e1 to en. Modelling declarations as merges means that while we
can benefit from the expressiveness of the merge operator, we do not need to introduce an additional
syntax for declarations. Besides the condition A ∗ B that avoids conflicts between two branches in a
merge, in the typing rule for dependent merges there is an extra disjointness condition A ∗ Γ to ensure
that the new environment has no conflicts. This extra disjointness condition is needed to ensure that
reduction is deterministic in Ei.

TDOS environment-based semantics. In Ei, an environment-based semantics, expressed by
a reduction relation of the form v ⊢ e1 ↪→ e2, is employed to capture the dynamic behavior of
expressions. In contrast to more conventional small-step reduction relations, which are typically
based on substitution and beta reduction, here v plays the role of the runtime environment and no
substitution is needed during reduction. Basically, an environment is stored during evaluation and
the expression being evaluated can access it. During the reduction procedure, the environment can
be changed locally. For example, suppose that the current environment is v, to evaluate a dependent
merge e1 # e2. The left branch e1 is evaluated to a value v1 first. After that, v1 is merged with v
such that e2 is evaluated under v # v1. As a result, e2 is able to access and fetch v1. For instance, the
dependent merge

{x = 2} # {y = ?.x + ?.x}

is evaluated to {x = 2} # {y = 4} under ⊤, since

{y = ?.x + ?.x}

is evaluated to {y = 4} under the environment ⊤ # {x = 2}.
The reduction semantics is based on a type-directed operational semantics (TDOS), following the

semantics of calculi with the merge operator [21]. As we have seen, type annotations can be used
to remove information from values. Thus, unlike many other calculi, the semantics of Ei is type-
dependent. That is, types affect the runtime behavior. To deal with such type-dependent semantics
based on giving an operational behavior to type annotations we use a TDOS. In the TDOS there is
a casting relation v ↪→A v′, where types are used to guide reduction. Since an environment can be
selected by a type annotation, casting also acts as a tool for synthesizing values in Ei. During the
reduction of an annotated query ? : A under environment v, casting is triggered, and v′ is synthesized
as the result. Take the program above as an example, to evaluate ? : {x : Int}, which is needed in the
projection ?.x, the following cast is triggered:

⊤ # {x = 2} ↪→{x:Int} {x = 2}

In essence, the cast extracts the value {x = 2} matching the type being cast. With this value, we can
further build an expression for the right part of the merge.

Abstractions in Ei. In Ei, an abstraction has the form {e}m where m denotes a mode. There are two
modes for abstractions: • and ◦. Here we focus on {e}•. Compared with a normal lambda abstraction
λx.e, there is no variable binding in {e}•, since values in the environment are looked up by types via
the query construct instead of by variable names. For example, after {?}• : Int→ Int is applied with
integer 1, the input 1 is put in the environment for evaluating ? : Int, and then the query construct

ECOOP 2023

21:10 Dependent Merges and First-Class Environments

looks up a value of type Int, which is 1. We require that a well-typed abstraction {e}• has a type
annotation. The (slightly simplified) typing rule for abstractions is:

Γ ∗ A Γ& A ⊢ e ⇐ B

Γ ⊢ {e}• : A→ B ⇒ A→ B
Typ-abs

Similarly to typing normal lambda abstractions, where a typing assumption x : A is added to the
typing context, for typing {e}• in Ei, the input type of {e}• is added into the context to type check the
body e. For example, Top ⊢ {?}• : Int→ Int ⇒ Int→ Int is valid, since under Top & Int, ? can check
against Int. Besides, there is also a disjointness condition in this rule, which ensures that there are no
conflicts between the context and the input type. Ambiguity would happen without such a condition
since, if the body e contains a ?, there would be different answers to the query ?, as shown in the
following example (Γ ⊢ e is used to denote the situation that the current context for e is Γ):

Int ⊢ ({?}• : Int→ Int) 2

Suppose that the current environment contains only the value 1, which is of type Int. After the function
is applied to 2, both 1 and 2 appear in the environment, and they have the same type Int. If ? desires a
value of type Int, then there are two candidates, which results in ambiguity. Thus the condition Γ ∗ A
prevents such programs. On the other hand, the following program is safe in the context Int, since
there is only one value, which is 1, having type Int in the environment.

Int ⊢ ({?}• : Bool→ Int) true

In general, conventional calculi where variables are involved normally ensure that a typing context
is unique, i.e., all variables in it are distinct. In our calculus, disjointness plays a similar role as
uniqueness. A function cannot accept expressions that have overlapping types with the current context.
For record types, {x : Int} is not disjoint with itself, so the following is not allowed:

{x : Int} ⊢ ({?.x}• : {x : Int} → Int) {x = 1}

In contrast, the following expression is well-typed in the context {x : Int}, since two record types are
disjoint if they have distinct labels:

{x : Int} ⊢ ({?.x}• : {y : Int} → Int) {y = 1}

Note that the use of records and distinct label names is how we can model conventional functions that
take several arguments of the same type. That is, we can use labels to unambiguously distinguish
between arguments of the same type, similarly to the use of distinct variable names in conventional
lambda abstractions.

The abstractions in Ei essentially abstract over an interface if we view interfaces as types. The
example from Cardelli in Section 2.1 can be encoded in our calculus:

{M = {x = 3}}

{N = {{f = {?.y + ?.x}◦ : {y : Int} → Int} # {z = (?.f) (?.x)}}• : {x : Int} → {f : Int→ Int}& {z : Int}}

Each module is modelled as a record (if the module does not import anything) or a function that
returns a record (if the module imports something). A group of related definitions is expressed as
a dependent merge of some other records. An interface, such as the interface of N, that contains
typing assumption(s) is encoded as input type(s) of an abstraction, and the export list is the output
type. Since merges are dependent in Ei, in the second module z is able to call f . With the ◦ mode
abstraction, standard lambda abstractions can also be encoded (we will discuss this in Section 5).
Both modules are typeable separately (in the empty context). Moreover, we can apply N with M,
since (?.N) (?.M) is typeable in the context containing N and M. Note that such an application is not
expressible in Cardelli’s work, since modules are not first-class in his setting.

J. Tan, B. C. d. S. Oliveira 21:11

Closures as a special case of boxes. As in usual environment-based semantics, closures are
used in Ei to keep lexical environments around. However, given that we have the box construct in
Ei, we do not need to invent a separate construct for closures. In fact, closures have the form of
v ▷ {e}• : A→ B, which is just a special case of a box. In a box closure, the environment is a value
and the expression under the environment is an annotated abstraction. Note that closures are values
and the abstraction inside is not evaluated. Instead, when a closure is applied with a value, the value
is put in the environment of the closure, and the body of the abstraction is going to be evaluated under
the extended environment. Take the following evaluation as an example:

({{?}• : Int→ Bool}• : Bool→ Int→ Bool) true 1

↪→ (⊤ ▷ {{?}• : Int→ Bool}• : Bool→ Int→ Bool) true 1

↪→∗ (⊤ # true ▷ {?}• : Int→ Bool) 1

↪→ ⊤ # true # 1 ▷ ? : Bool

↪→∗ true

The abstraction takes a boolean and an integer as input and returns the boolean. At first, it is packed
up with the empty environment to form a closure. Then the two values true and 1 are merged with
the environment to evaluate the body ? : Bool. With casting, the annotated query is evaluated to true.

Encoding λi. To demonstrate the expressiveness of Ei we show that it can encode all well-typed
programs in the λi calculus [32]: an existing calculus with non-dependent merges and without first-
class environments. There are two non-obvious obstacles in the encoding. Firstly, unlike Ei, the λi

calculus is a conventional lambda calculus with conventional lambda abstractions and variables. Our
encoding of λi shows that queries and abstractions in Ei can encode conventional variables and lambda
abstractions. The second obstacle in the encoding is that dependent merges have more disjointness
constraints than non-dependent merges. Therefore, it is not clear how some non-dependent merges
may be encoded. However, a combination of dependent merges and other constructs in the Ei calculus
enables an encoding of all non-dependent merges. Section 5 details the encoding and proves that all
typeable programs in λi are encodable and typeable in Ei.

3 The Ei Calculus

In this section we present the Ei calculus, which is a calculus with dependent merges and first-class
environments. In Ei, type contexts are types, and run-time environments can be assembled, composed,
manipulated explicitly, and used to run computations under such environments.

3.1 Syntax

The syntax of Ei is as follows:

Labels l, x, y, z, . . .
Types and Contexts A, B,ΓF Int | Top | A→ B | A & B | {l : A}
Function modes mF • | ◦
Expressions eF ? | i | ⊤ | {e}m | e1 ▷ e2 | e1 e2 | e1 # e2 | e : A | {l = e} | e.l
Values vF i | ⊤ | v ▷ ({e}• : A→ B) | v ▷ ({e}◦ : {l : A} → B) | {l = v} | v1 # v2

Types and contexts. In Ei there is no syntactic distinction between types and contexts: contexts
are types and any type can be a context. In standard calculi typing contexts are lists of typing

ECOOP 2023

21:12 Dependent Merges and First-Class Environments

assumptions of the form x : A that associates variable x with type A. This particular case is encoded
in Ei with a single-field record type {x : A}. For clarity, we use different meta-variables to denote
different uses of types (A, B, C, etc.) and contexts (Γ). Two basic types are included: the integer type
Int and the top type Top. Function types and intersection types are created with A → B and A & B
respectively. {l : A} denotes a record type in which A is the type of the field. Multi-field record types
can be desugared to an intersection of single-field record types [32, 40].

Expressions. Meta-variable e ranges over expressions. Expressions include some constructs in
standard calculi with a merge operator: integers (i); a canonical top value ⊤, which can be seen as a
merge of zero elements; annotated expressions (e : A); application of a term e1 to term e2 (denoted
by e1 e2); and merge of expressions e1 and e2 (e1 # e2). The expression {l = e} denotes a single-field
record where l is the label and e is its field. Similarly to record types, a multi-field record can be
viewed as a merge of single-field records. Projection e.l selects the field from e via the label l.

Besides these standard constructs, there are some novel constructs in our system. Unlike standard
calculi, where variables are used to lookup values, we borrow the query construct ? from implicit
calculi [12] to synthesize values by types. However, unlike implicit calculi, in Ei we can completely
eliminate the need for variables, since a combination of queries and other constructs can encode
traditional uses of variables. Such encoding will be discussed in detail in Section 5. The absence of
variables simplifies binding in comparison to other calculi. {e}m stands for abstractions in which m
is the mode of an abstraction and can be either • or ◦. Abstractions play the same role as lambda
abstractions, but they abstract over the input type of the function, instead of abstracting over a variable.
The ◦ mode denotes a special form of abstraction that is useful to encode lambda abstractions. The
term e1 ▷ e2 is called a box. A box assigns a local environment e1 for e2, and e2 is not affected by the
global context or environment. In other words, boxes allow the computation of e2 to be performed
under the runtime environment resulting from e1.

Values. The meta-variable v ranges over values. Values include integers, the canonical ⊤ value,
closures, merges of values and records in which the field is a value. Closures are a special kind of
box, in which the local environment e1 is a value and e2 is an annotated abstraction. For closures, the
type annotation for {e}• can be any arrow type, whereas the input type of the type annotation for {e}◦

can only be a record type.

3.2 Subtyping and Disjointness

Subtyping. The subtyping rules, shown in Figure 1, are standard for a calculus with intersection
types [13], but they include an additional rule S-rcd for subtyping record types. Note that the
combination of the subtyping rules for intersection types and record types enables us to express both
depth and width subtyping for multi-field record types (which are just encoded as intersections of
single-field record types). This extended subtyping relation is reflexive and transitive [22].

Disjointness. Compared to λi, disjointness is defined in a slightly different way, inspired by an
approach suggested by Rehman et al. [37]. To make two functions or two records mergeable, we
define disjointness based on ordinary types whose definition is shown in Figure 1. There are two
variants of ordinary types in Ei. The one for defining disjointness contains premises marked in gray.
In this variant, ordinary types are inductively defined to be types where the top type and intersection
types can never appear (except as input types of functions). With the help of ordinary types, we define
disjointness as:

▶ Definition 1 (Disjointness). A ∗ B ≡ ¬(∃C, Ordinary C ∧ A <: C ∧ B <: C)

J. Tan, B. C. d. S. Oliveira 21:13

A <: B (Subtyping)

S-z

Int <: Int

S-top

A <: Top

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-andl
A1 <: A3

A1 & A2 <: A3

S-andr
A2 <: A3

A1 & A2 <: A3

S-and
A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-rcd
A <: B

{l : A} <: {l : B}

Ordinary A (Ordinary Types)

O-int

Ordinary Int

O-arrow
Ordinary B

Ordinary A→ B

O-rcd
Ordinary B

Ordinary {l : B}

Figure 1 Subtyping and ordinary types.

Two types are disjoint if and only if the two types do not share any common ordinary supertype. We
have proved that our definition of disjointness is equivalent to the one employed by Huang et. al [22]
in their formulation of λi. This definition states that atomic values, which can inhabit the two types,
cannot have overlapping types. Importantly, our definition allows two arrow types or two record
types to be disjoint. For example, Int → Bool is disjoint with Int → Char as the two types do not
share a common ordinary supertype. Note that there is also an equivalent algorithmic definition of
disjointness, which is shown in the appendix. Some of the fundamental properties of disjointness are
shown next:

▶ Lemma 2 (Disjointness Properties). Disjointness satisfies:
1. If A ∗ B, then B ∗ A.
2. A ∗ (B & C) if and only if A ∗ B and A ∗C.
3. If A ∗ (B1 → C), then A ∗ (B2 → C).
4. A ∗ B if and only if {l : A} ∗ {l : B}.
5. C ∗ D if and only if (A→ C) ∗ (B→ D).
6. If A <: B and A ∗C, then B ∗C.

3.3 Bidirectional Typing

The type system of Ei shown in Figure 2 is bidirectional. There are two modes of typing, where⇒
and⇐ denote the synthesis and checking modes respectively. The notation⇔ is a metavariable for
typing modes. The meaning of typing judgment Γ ⊢ e ⇔ A is standard: under the context Γ (which
is a type), expression e can synthesize (with⇒) or check against (with⇐) A.

Typing the query construct. Rule Typ-ctx states that ? can synthesize the context. With rule Typ-
sub, ? checks against any type that is a supertype of the context. In addition, with rule Typ-anno,
under a context Γ, for any supertype A of Γ, ? : A can synthesize A. Since contexts are types in our
system, a supertype of a type means a portion of a typing context. By annotating ? with a supertype
of the context, we can proactively pick the desired type information (or equivalently, hide part of type

ECOOP 2023

21:14 Dependent Merges and First-Class Environments

Γ ⊢ e ⇔ A (Bidirectional Typing)

Typ-lit

Γ ⊢ i ⇒ Int

Typ-ctx

Γ ⊢ ? ⇒ Γ

Typ-top

Γ ⊢ ⊤ ⇒ Top

Typ-anno
Γ ⊢ e ⇐ A

Γ ⊢ e : A ⇒ A

Typ-abs
Γ ∗ A C <: Am Γ& A ⊢ e ⇐ B

Γ ⊢ {e}m : A→ B ⇒ C → B

Typ-app
Γ ⊢ e1 ⇒ A→ B Γ ⊢ e2 ⇐ A

Γ ⊢ e1 e2 ⇒ B

Typ-box
Γ ⊢ e1 ⇒ Γ1 Γ1 ⊢ e2 ⇒ A

Γ ⊢ e1 ▷ e2 ⇒ A

Typ-rcd
Γ ⊢ e ⇒ A

Γ ⊢ {l = e} ⇒ {l : A}

Typ-proj
Γ ⊢ e ⇒ {l : A}

Γ ⊢ e.l ⇒ A

Typ-sub
Γ ⊢ e ⇒ A A <: B

Γ ⊢ e ⇐ B

Typ-mergev
Γ ⊢ v1 ⇒ A Γ ⊢ v2 ⇒ B v1 ≈ v2

Γ ⊢ v1 # v2 ⇒ A & B

Typ-dmerge
Γ ⊢ e1 ⇒ A Γ& A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B

Type Extraction Am

A• = A
{l : A}◦ = A

Figure 2 Bidirectional type system of Ei. The syntax for the bidirectional modes is defined as⇔ ::=⇒ | ⇐.

information) from the context. For example, Int & Bool ⊢ ? : Int ⇒ Int is valid, and allows us to pick
Int from a typing context with Int & Bool.

Typ-anno

Typ-sub
Int & Bool ⊢ ? ⇒ Int & Bool Int & Bool <: Int

Int & Bool ⊢ ? ⇐ Int

Int & Bool ⊢ ? : Int ⇒ Int

Typing abstractions. Rule Typ-abs is the typing rule for abstractions. An abstraction can synthes-
ize an arrow type, in which the shape of the input type is determined by the mode. For {e}• : A→ B
we simply synthesize the type A → B. For {e}◦ with an annotation, {e}◦ is well-typed only if the
input type is a record type. Furthermore {e}◦ : {l : A} → B synthesizes A→ B where A is extracted
from {l : A}. This peculiar treatment of {e}◦ : {l : A} → B is because we wish to be able to model
conventional lambda abstractions of the form λl. e : A → B faithfully. In conventional lambda
abstractions, the labels or variable names are only used internally, but they are not reflected on the
type. The {e}◦ abstractions model this behavior and also hide the label information on the type. While
an abstraction with the • mode accepts an expression of a type which is the exact input type of its
annotation, a well-typed abstraction with the ◦ mode can only have an annotation of form {l : A} → B.
The label information for the input type is forgotten for the overall type of the abstraction.

Note also that, for obtaining type preservation, there is a subtyping condition in rule Typ-abs,
similarly to the approach employed by Huang and Oliveira [21]. In an implementation of Ei, this
subtyping condition can be omitted and we can let {e}m : A → B infer Am → B directly, since the
condition is only used in Ei to ensure that closures, which are used during reduction at runtime, are
type-preserving. In addition to avoiding ambiguity of the type-based lookups, when we introduce
assumptions into the context, we need to ensure that the new assumptions are disjoint to the existing
assumptions in the environment. Thus rule Typ-abs also has a disjointness premise to ensure this.

J. Tan, B. C. d. S. Oliveira 21:15

Typing dependent merges. Rule Typ-dmerge is the typing rule for merges. Unlike previous
work for intersection types and the merge operator [22], the merges are dependent in our work. For a
specific merge e1 # e2, the right branch e2 may depend on the left branch e1. The typing context for e2

in the premises is the intersection type Γ& A, which means that e2 is affected by not only the global
context Γ but also the synthesized type of e1. In this way, e2 can be constructed with the information
of e1, as illustrated by the following example:

{z : Int} ⊢ {x = 1} # {y = (? : {x : Int}).x + 1} ⇒ {x : Int}& {y : Int}

The right branch {y = (? : {x : Int}).x + 1} makes use of the type information of the left branch, by
using ? to pick {x : Int} from {z : Int}& {x : Int}. Then it will be able to utilize the value information
from {x = 1} to evaluate the expression in the right branch of the merge.

There are two disjointness conditions in rule Typ-dmerge. One is A∗B, which makes two branches
e1 and e2 be merged safely without ambiguities as in previous work [22]. However, this condition is
not sufficient to prevent all the conflicts between values when the merges are dependent. An additional
disjointness condition A ∗ Γ is needed to ensure that the synthesized type of the left branch e1 is
disjoint with the context. Without this extra condition, there can be conflicts between e1 and the
current environment. Take the following as an example:

(Int→ String) & Int ⊢ 2 # ((? : Int→ String) (? : Int))

The context contains type Int → String and Int, and the left branch, 2, has type Int which clashes
with the Int that is already in the context. The right branch is an application, which picks a closure
and another integer value, say 1, from the current environment. Suppose that the closure returns the
string representation of the input integer. Then ? : Int in the right branch can choose either 1 from the
environment or 2 from the left branch, and the merge above can be non-deterministically evaluated to
either 2 # “1” or 2 # “2”. Since we wish to have deterministic evaluation, we prevent such cases with
the additional disjointness condition A ∗ Γ.

Consistency, boxes and closures. Rule Typ-mergev is the typing rule for consistent merges.
This rule is identical to the rule in previous work using non-dependent merges [21]. Like in previous
work, rule Typ-mergev is a special run-time typing rule for merges of values and can be omitted
in a programming language implementation. If two consistent values are well-typed then it is safe
to merge them together. One may wonder why in this rule the context is not extended with A to
type-check v2. The reason is that values are closed, so they cannot depend on the information that is
present in the context. During the reduction process, such information has been already filled in into
the values. Consistency is defined in terms of casting (whose definition is shown in Figure 3):

▶ Definition 3 (Consistency). Two values v1 and v2 are said to be consistent (written as v1 ≈ v2) if
for any type A, the result of casting for the two values is identical.

v1 ≈ v2 ≡ ∀ A, i f v1 ↪→A v′1 and v2 ↪→A v′2 then v′1 = v′2

Given two values, if they have disjoint types, then they are consistent:

▶ Lemma 4 (Disjointness implies consistency). If A ∗ B, Γ1 ⊢ v1 ⇒ A, and Γ2 ⊢ v2 ⇒ B, then
v1 ≈ v2.

Rule Typ-box is the rule for boxes. To make a box e1 ▷ e2 well-typed, the global context Γ is
replaced for e2 with type Γ1, which is the synthesized type of the local environment e1. In other
words, the expression e2 in the box is only affected by the local context. As a special kind of box,

ECOOP 2023

21:16 Dependent Merges and First-Class Environments

v ↪→A v′ (Casting)

Casting-int

i ↪→Int i

Casting-top

v ↪→Top ⊤

Casting-arrow
¬⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A→ B) ↪→C→D v ▷ ({e}m : A→ D)

Casting-arrowtl
⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A→ B) ↪→C→D (C → D)↑

Casting-mergevl
v1 ↪→A v′1 Ordinary A

v1 # v2 ↪→A v′1

Casting-mergevr
v2 ↪→A v′2 Ordinary A

v1 # v2 ↪→A v′2

Casting-and
v ↪→A v1 v ↪→B v2

v ↪→A & B v1 # v2

Casting-rcd
v ↪→A v′

{l = v} ↪→{l:A} {l = v′}

Figure 3 Casting of Ei.

closures are closed since the local environment for them is a value and this information is stored
for the abstraction. Thus, it is always safe to change the context for closures to any other context.
However, we cannot do that for abstractions. For example, if the context for {?}• : Int → Int is
changed from Top to Int, then the disjointness condition in rule Typ-abs is broken.

Generally speaking, changing the typing context may introduce more type information such that
disjointness does not hold anymore. For example, suppose that the current context is Int, which is
disjoint with Char & Bool. If we replace Int with Int & Bool, then the new type information Bool is
introduced in the context and it conflicts with Char & Bool. For disjoint values, Lemma 4 ensures that
the values are also consistent, so they can be merged together. Therefore, typing two disjoint values
does not rely on rule Typ-dmerge, which restricts the type of the left branch to be disjoint with the
context. In fact, another way to describe the closedness of values is to show that the typing context
for values can be replaced arbitrarily:

▶ Lemma 5 (Value closedness). If Γ1 ⊢ v ⇔ A, then Γ2 ⊢ v ⇔ A.

3.4 Semantics

We now introduce the call-by-value semantics of Ei using an environment-based operational semantics.
The semantics employs a type-directed operational semantics (TDOS) [21]. In TDOS, in addition to
a reduction relation, there is also a casting relation, which is introduced to reduce values based on the
type of a given value.

Casting. The casting relation, shown in Figure 3, is defined on values. The casting relation is
essentially the same as the relation in Huang et al.’s work [22]. The only difference is that, instead of
having lambda abstractions as values, we now have closures as values. So the rules Casting-arrow
and Casting-arrowtl change correspondingly to adapt to the new form of values. Rule Casting-int
casts any integer value to itself under type Int. Rule Casting-top casts any value to a ⊤ under the top
type. For merges, rule Casting-mergevl and rule Casting-mergevr cast one of the two branches under
an ordinary type. These two rules can be viewed as value selectors for merges. The definition of
ordinary types is the variant without the conditions marked in gray shown in Figure 1. In other words,
ordinary types used in casting are those types that are not the top type or intersection types. With
rule Casting-and, a value is cast under two parts of an intersection type respectively, and a merge is

J. Tan, B. C. d. S. Oliveira 21:17

Frames F F [] : A | [] # e | {l = []} | [].l | [] e | v [] | [] ▷ e

v ⊢ e ↪→ e′ (Reduction)

Step-ctx

v ⊢ ? ↪→ v

Step-annov
v1 ↪→A v′1

v ⊢ v1 : A ↪→ v′1

Step-merger
v # v1 ⊢ e ↪→ e′

v ⊢ v1 # e ↪→ v1 # e′

Step-closure

v ⊢ {e}m : A→ B ↪→ v ▷ ({e}m : A→ B)

Step-box
v1 ⊢ e ↪→ e′ ¬ Closure (v1 ▷ e)

v ⊢ v1 ▷ e ↪→ v1 ▷ e′

Step-boxv

v ⊢ v1 ▷ v2 ↪→ v2

Step-projv

v ⊢ {l = v1}.l ↪→ v1

Step-eval
v ⊢ e ↪→ e′

v ⊢ F[e] ↪→ F[e′]
Step-beta

v1 ↪→Am v′1

v ⊢ (v2 ▷ ({e}m : A→ B)) v1 ↪→ (v2 # A
v′1
m) ▷ (e : B)

Value Construction Av
m

Av
• = v
{l : A}v◦ = {l = v}

v ⊢ e ↪→∗ e′ (Multistep Reduction)

Multi-refl

v ⊢ e ↪→∗ e

Multi-step
v ⊢ e ↪→ e′ v ⊢ e′ ↪→∗ e′′

v ⊢ e ↪→∗ e′′

Figure 4 Call-by-value reduction and multistep reduction of Ei.

returned by combining the two results via the merge operator. Rule Casting-rcd casts a record value
under a record type with the same label, and the result is a new record that is constructed from the
result of casting the inner value under the inner type of the record type.

A closure v ▷ {e}m : A → B can be cast under an arrow type C → D to be a new value. If D is
not top-like, then rule Casting-arrow casts the closure such that the return type is changed to D.
Rule Casting-arrowtl ensures the determinism of casting by casting a closure to be a value generated
by the value generator function (A↑) for top-like types. Without this rule, casting a merge of two
closures via a top-like type can lead to different results. The definition of top-like types and the value
generator are shown in the appendix.

Reduction. Reduction is shown in Figure 4. In the reduction relation v ⊢ e1 ↪→ e2, the environment
v is a value. Since environments are involved in reduction, the definition of multi-step reduction is
changed accordingly as shown in Figure 4. Briefly speaking, v ⊢ e1 ↪→

∗ e2 means that e1 can be
reduced to e2 by multiple steps under the same environment v, though the environment is possibly
changed locally, during single-step reductions.

Synthesizing values by types. Rule Step-ctx reduces a query ? to the current environment.
Rule Step-annov is the rule for annotated values, which triggers casting. In TDOS, casting uses type
information from type annotations to guide the reduction to ensure determinism. Moreover, in Ei,
casting also allows values to be fetched by types from the environment.

Multi-step

Step-eval

Step-ctx
v ⊢ ? ↪→ v

v ⊢ ? : A ↪→ v : A

v ↪→A v′

v ⊢ v : A ↪→ v′
Step-annov

v ⊢ ? : A ↪→∗ v′

ECOOP 2023

21:18 Dependent Merges and First-Class Environments

As shown in the derivation tree above, with v ↪→A v′, we can conclude that ? : A will be evaluated
to v′ eventually. That is, the answer to a query that is equipped with a specific type, is the result of
casting the current environment under that type. For example, suppose that the environment is 1 # true.
Then the answer to the query ? : Int is 1 while the answer to the query ? : Bool is true.

Evaluating dependent merges. Similarly to the reduction strategy in calculi with intersection
types and a merge operator, merges are evaluated from left to right in Ei. That is, for a merge e1 # e2,
the right branch e2 is evaluated only if the left branch e1 is a value. However, since merges are
dependent in Ei, the evaluation of e2 relies on e1. Specifically, for a merge v1 # e in which v1 is already
a value, rule Step-merger evaluates the right branch e under a new environment v # v1 such that e can
access not only the original environment v but also v1. The following is an example of evaluating
dependent merges, assuming an initial environment ⊤:

{x = 1} # {y = (? : {x : Int}).x + 1}

↪→ {x = 1} # {y = ((⊤ # {x = 1}) : {x : Int}).x + 1}

↪→ {x = 1} # {y = ({x = 1}).x + 1}

↪→ {x = 1} # {y = 1 + 1}

↪→ {x = 1} # {y = 2}

The initial merge is evaluated to {x = 1} # {y = 2}. In every single step of the evaluation above,
rule Step-merger is triggered and the right branch {y = . . . } is evaluated under ⊤ # {x = 1}.

Closures and the beta rule. In our call-by-value semantics, when a function, which is not a
value, is applied with a value, rule Step-closure transforms the function to a closure by assigning the
current environment to it. Then rule Step-beta reduces the application, where the argument is cast
first with the input type of the annotation of the closure. After that, the casting result is merged with
the environment in the closure, and this merge becomes the local environment of a box. The body of
the box is the body of the abstraction inside the applied closure. Thus, the body of the abstraction
will be evaluated further under the new environment, which is a merge carrying the information from
both the argument and the environment of the closure.

In rule Step-beta, the value Av′1
m that is added to the environment is different according to the mode

of the abstraction. For v2 ▷ ({e}• : A→ B), A• = A and Av′1
• = v′1, which is the result of casting v1 with

type A. If the mode is ◦, then the input type for the abstraction can only be a record type, say {l : A}.
Thus for v2 ▷ ({e}◦ : {l : A} → B), {l : A}◦ = A and {l : A}v

′
1
◦ = {l = v′1}. That is, v2 ▷ ({e}◦ : {l : A} → B)

can accept a value of type A as input, and the value is given the name l such that it becomes a record
during runtime. In this way, the body of the abstraction e can use the label to access the information
in the record. When the evaluation context is the body of a box, rule Step-eval evaluates the local
environment under the global environment until it is a value. After that, rule Step-box evaluates the
body of the box under the local environment. A condition is set in rule Step-box to prevent closures
from being reduced further. When the body is evaluated to a value, rule Step-boxv returns that value.

4 Determinism and Type Soundness

In this section, we show that the operational semantics of Ei is deterministic and type-sound. Unlike
previous work on calculi with the merge operator, the typing contexts and the environments appearing
in the theorems are generalized to arbitrary ones, since environments are first-class and can be
manipulated explicitly in our system.

J. Tan, B. C. d. S. Oliveira 21:19

4.1 Determinism

To obtain the determinism of reduction, the determinism of casting is needed. With the help of
consistency, any well-typed value that is cast under the same type results in a unique value.

▶ Lemma 6 (Determinism of casting). If Γ ⊢ v ⇒ B, v ↪→A v1, and v ↪→A v2, then v1 = v2.

With determinism of casting, we can prove the following generalized version of determinism, which
states that if an expression e is well-typed under the type of the environment v, then the reduction
result is the same.

▶ Theorem 7 (Generalized determinism). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v ⊢ e ↪→ e1, and
v ⊢ e ↪→ e2, then e1 = e2.

We cannot prove the standard theorem (where the typing context for e is Top and the environment
v is ⊤) directly. The reason is that the environment is changed in rule Step-merger (from v to v # v1)
and rule Step-box (from v to v1). If we prove the standard theorem directly, then the premises in the
inductive hypothesis restrict the environment to be ⊤, which is not strong enough. Therefore, we
generalize the theorem. Also note that the typing context for v can be any type in the theorem, since
from Lemma 5 we know that the context for a well-typed value can be arbitrary. This fact is important
for the proofs of metatheory. When a value is well-typed, we want it also to be well-typed under the
context (say Top) appearing in the formalization of the theorem. Consider rule Step-box for example.
The environment v1 in the box is well-typed under the type of v, and it is also well-typed under Top,
which meets the condition in the inductive hypothesis.

The standard determinism theorem can then be obtained as a corollary:

▶ Corollary 8 (Determinism). If Top ⊢ e ⇔ A, ⊤ ⊢ e ↪→ e1, and ⊤ ⊢ e ↪→ e2, then e1 = e2.

4.2 Progress and Preservation

For progress and preservation, we need the following properties of casting:

▶ Lemma 9 (Progress of casting). If Γ ⊢ v ⇔ A then there exists v′ such that v ↪→A v′.

▶ Lemma 10 (Transitivity of casting). If v ↪→A v1 and v1 ↪→B v2 then v ↪→B v2.

▶ Lemma 11 (Consistency after casting). If Γ ⊢ v ⇒ C, v ↪→A v1 and v ↪→B v2, then v1 ≈ v2.

▶ Lemma 12 (Preservation of casting). If v ↪→A v′ and Γ ⊢ v ⇒ B then Γ ⊢ v′ ⇒ A.

These lemmas follow the logic of proving type soundness by Huang and Oliveira [21]. Lemma 9
states that a well-typed value can always be cast with its type. Lemma 10 ensures that casting results
in the same value whether a value is cast directly or not. With this property and the determinism of
casting, we can prove that the casting results of a value are consistent (Lemma 11), which ensures
that casting preserves types (Lemma 12).

Progress and preservation. Similarly to generalized determinism, we have generalized progress
and preservation lemmas. Both theorems are proved by induction on the typing judgment.

▶ Theorem 13 (Generalized progress). If Γ ⊢ e ⇔ A, then
e is a value, or
for any value v, if Top ⊢ v ⇒ Γ, then there exists e′ s.t. v ⊢ e ↪→ e′.

▶ Theorem 14 (Generalized preservation). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, and v ⊢ e ↪→ e′, then
Γ ⊢ e′ ⇔ A.

ECOOP 2023

21:20 Dependent Merges and First-Class Environments

With the generalized theorems above, the standard progress and preservation theorem can then be
obtained as corollaries:

▶ Corollary 15 (Progress). If Top ⊢ e ⇔ A, then e is a value, or there exists e′ s.t. ⊤ ⊢ e ↪→ e′.

▶ Corollary 16 (Preservation). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→ e′, then Top ⊢ e′ ⇔ A.

Type-safety. Combining generalized progress and preservation, we have generalized type safety
where the multistep relation is involved. Basically, this generalized result indicates that under a
well-typed environment, a well-typed expression will never get stuck.

▶ Corollary 17 (Generalized type safety). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v is a value, and
v ⊢ e ↪→∗ e′, then either e′ is a value or there exists e′′ s.t. v ⊢ e′ ↪→ e′′.

Thus, the standard type safety is an immediate corollary where the environment is instantiated to be
the top value.

▶ Corollary 18 (Type safety). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→∗ e′, then either e′ is a value or there
exists e′′ s.t. ⊤ ⊢ e′ ↪→ e′′.

5 Encoding of λi

In this section, we show that Ei can encode the type system of the λi [32] via a type-directed translation.
In other words, every well-typed expression in λi can be translated into a well-typed expression in
Ei. We do not prove the operational correspondence because of the significant differences between
the formulations of the semantics of λi and the environment-based semantics of Ei. However, as we
discussed in Section 2, the Ei calculus enables first-class environments and dependent merges, which
cannot be modelled by λi. The translation of λi to Ei demonstrates a few different things:
1. Variables and lambda abstractions are encodable. The first purpose of this translation is to

show that standard variables and lambda abstractions can be fully encoded in Ei. Since λi has
conventional lambda abstractions, the translation from λi to Ei demonstrates that lambdas are
encoded in a general way.

2. Non-dependent merges are encodable. The second purpose of the translation is to show that
non-dependent merges are also encodable. This encoding is not obvious since dependent merges
introduce new disjointness restrictions that are not present in calculi such as λi. We show that a
combination of Ei constructs can express all non-dependent merges without loss of generality.

3. The Ei calculus subsumes λi. Finally, with the two previous points, we can generally conclude
that all typeable programs in λi can be encoded in Ei. So Ei is more powerful than λi. This is a
desirable property since Ei is designed as a potential replacement for λi. Therefore, we should be
able to express all the programs that are expressible in λi.

5.1 Syntax

The definitions of types, expressions, and typing contexts of λi are shown as follows:

Types A, BF Int | Top | A→ B | A & B

Expressions E F x | i | ⊤ | λx. E | E1 E2 | E1 , , E2

Contexts ΓF · | Γ, x : A

Note that λi is a conventional lambda calculus with standard lambda abstractions and a standard
context definition. Moreover, in λi contexts are not types, and environments are not first class.

J. Tan, B. C. d. S. Oliveira 21:21

Γ ⊢ E : A⇝ e (Typing with elaboration)

Styp-lit

Γ ⊢ i : Int⇝ i

Styp-top

Γ ⊢ ⊤ : Top⇝ ⊤

Styp-var
x : A ∈ Γ

Γ ⊢ x : A⇝ (? : {x : A}).x

Styp-sub
Γ ⊢ E : A⇝ e A <: B

Γ ⊢ E : B⇝ e : B

Styp-abs
Γ, x : A ⊢ E : B⇝ e

Γ ⊢ λx. E : A→ B⇝ {e}◦ : {x : A} → B

Styp-app
Γ ⊢ E1 : A→ B⇝ e1 Γ ⊢ E2 : A⇝ e2

Γ ⊢ E1 E2 : B⇝ e1 e2

Styp-merge
Γ ⊢ E1 : A⇝ e1 Γ ⊢ E2 : B⇝ e2 A ∗ B fresh x

Γ ⊢ E1 , , E2 : A & B⇝ {x = ?} ▷ (?.x ▷ e1) # ((? : {x : |Γ|}).x ▷ e2)

Figure 5 Type system of λi and its type-directed translation into Ei.

5.2 Type-Directed Translation of λi to Ei

To utilize the information from λi contexts to construct expressions of Ei, we need to transform λi

contexts to Ei contexts which are types. The translation function for contexts is defined as follows.

▶ Definition 19 (Context translation). |Γ| transforms contexts of λi to types of Ei.

| · | = Top

|Γ, x : A| = |Γ|& {x : A}

Figure 5 shows the typing rules of λi with an elaboration into Ei. Four of the rules are straightfor-
ward. Rule Styp-lit simply translates an integer to itself. Similarly, Rule Styp-top translates the top
value to itself. Rule Styp-sub produces an expression by adding a type annotation, which is a super
type of the type of the expression in the premise. Rule Styp-app simply combines the two elaborated
expressions into an application in Ei.

Encoding variables. Rule Styp-var uses labels to model variables. If a variable x has type A,
then x : A must appear in the context. This information from contexts is encoded as a record type
{x : A} in Ei. Thus, it becomes safe to annotate the query ? with {x : A}. To get the type of x, a record
projection is performed to extract the value of type A from {x : A}.

Encoding lambda abstractions. Similarly, the type information of the bound variable x in a
λi lambda abstraction is also translated to {x : A}. For any λx. E of type A → B, rule Styp-abs
encodes it as {e}◦ : {x : A} → B, which has type A → B instead of {x : A} → B. In this way, it can
accept values of type A instead of {x : A}. For example, λx. x with type Int → Int is translated to
{(? : {x : Int}).x}◦ : {x : Int} → Int, which can accept the integer 1 as input in an application.

ECOOP 2023

21:22 Dependent Merges and First-Class Environments

Encoding non-dependent merges. Merges in λi are non-dependent and are encoded in an
interesting way in Ei. For dependent merges, the global context should be disjoint with the type of
the left branch. To prevent overlapping between |Γ| and A, a fresh label x that does not appear in the
existing types is picked to create a record {x : |Γ|} that holds the current environment. This record
becomes the context for the merge and is disjoint with A, since x is fresh and consequently A cannot
contain a record with a field x. With the box construct, the merge is assigned the local environment
{x = ?}. For the left branch of the merge, projection ?.x unwraps the context to take back the original
context |Γ|. Similarly, unwrapping is needed for the right branch. However, since A appears in the
typing scope for the right branch in a dependent merge, the annotation {x : |Γ|} is needed for hiding A.
In this way, only |Γ| appears in the typing context of e2.

Example In λi, the merge x , , λy. y can have type Int & (Int → Int) in the context x : Int. This
expression is translated to the following expression in Ei:

{z = ?} ▷ (?.z ▷ (? : {x : Int}).x) # ((? : {z : {x : Int}}).z ▷ {(? : {y : Int}).y}◦ : {y : Int} → Int)

where z is the fresh label that wraps the environment. This Ei expression infers Int & (Int→ Int) in
the context {x : Int}.

Type safety of the translation. The following result shows the type-safety of the translation, and
that the type system of λi can be translated into Ei without loss of expressivity. Importantly, normal
lambda abstractions and non-dependent merges are expressible in Ei.

▶ Theorem 20 (Well-typed encoding of λi). If Γ ⊢ E : A⇝ e , then |Γ| ⊢ e⇒ A.

6 Related Work

First-class environments. First-class environments enable environments to be manipulated by
programmers. Gelernter et al. [18] invented a programming language called Symmetric Lisp that
enriches Lisp with a kind of first-class environment, which can be used to evaluate expressions. They
argued using several examples that the first-class environments they defined generalize a variety of
constructs including modules, records, closures, and classes. However, the formal semantics of the
language is not included in their work. Miller and Rozas [29] also proposed an extension to the
Scheme programming language. In their work, environments are created with make-environment, and
a binary eval function is used to perform computations under a first-class environment. Jagannathan
[23, 24] defined a dialect of Scheme called Rascal, in which two key operators related to first-class
environments are introduced: reify that returns the current environment as a data object, and reflect
which transforms data objects to an environment.

Queinnec and de Roure [36] present a form of first-class environments as an approach to share
data objects for the Scheme programming language. Operators on environments, such as composition,
importing, and exporting, are supported in their setting. Moreover, the first-class environments they
proposed obey the quasi-static discipline [26] such that variables are either static or quasi-static during
importing and exporting. Note that our treatment of variable names is similar to the quasi-static
scoping approach [26] in some sense. To solve the issue of name capturing, in quasi-static scoping, a
free variable has an internal name and an external name. The external name is for sharing variable
bindings and is not α-convertible. The programmer has to resolve it before dereferencing. In our
setting, the label x in the abstraction {?.x}• : {x : Int} → Int acts as an external name. In order to avoid
ambiguities, the external names in quasi-static scoping must be different in their setting, which is
similar to our approach where names are ensured to be different via disjointness.

J. Tan, B. C. d. S. Oliveira 21:23

All the work above is done in a dynamically typed setting. Regarding typed languages, there is
little work on first-class environments, which are basically based on explicit substitutions [1]. Sato
et al. [44, 45] introduced a simply typed calculus called λε with environments as first-class values.
In their work, full reduction is supported, and lambda abstractions allow local renaming of bounded
variables to fresh names. Sato et al. proved some desirable properties, such as subject reduction,
confluence and strong normalizability, for this calculus. First-class environments are called explicit
environments in λε, which are sets of variable-value pairs. Moreover, there is an evaluation operation
eJaK that evaluates the expression a under an environment e. This construct is similar to the box
construct in Ei. However, reification and environment concatenation are not supported in his work.
Nishizaki [47] proposed a similar calculus with first-class environments, in which a construct called
id is introduced to return the current environment. This construct acts as reification and is similar to
our queries, but Nishizaki’s calculus does not support restriction. In Ei queries together with type
annotations can retrieve parts of an environment, and model environment restriction. While there is
an operator called extension, which can be viewed as a special case of concatenation in Nishizaki’s
work, the types do not accumulate. In contrast, environment concatenation in Ei is modelled via
dependent merges with type information flowing from left to right. Subtyping is not included in
existing type systems with environment types. In contrast, Ei supports subtyping and has a natural
notion of subtyping of environments. As a result, it enables more applications. For instance, objects
and inheritance can be modelled in Ei [5].

Module systems. Module systems [27] are a key structuring mechanism to build reusable compon-
ents in modular programming. In ML-style languages, module systems serve as a powerful tool for
data abstraction. Generally speaking, a module is a named collection of (dependent) declarations that
aim to define an environment. Since dependent merges are supported in Ei, a simple form of modules
is allowed by using records and merges in our work. For example, the record {M = {x = 1} # {y = ?.x}}
in Ei defines a module named M that contains dependent declarations. Conventionally, ML-style
languages are stratified into two parts: a core language, which is associated with ordinary values and
types; and a module language consisting of modules and module types (or signatures). In this way,
modules are second-class since a module cannot be passed as an argument to a function. In Ei, a
simple form of first-class modules is enabled via first-class environments. Therefore in our setting,
modules can be created and manipulated on the fly. For instance, the above module M encoded as a
record can be passed to a function, such that the values bound with x and y could be updated.

There is much work on getting around this stratification to enable first-class modules. One
approach is to utilize dependent types. Harper and Mitchell proposed XML calculus [20] which is
a dependent type system to formalize modules as Σ and Π types. After that, translucent sums [19]
and singleton types [48] were present as extensions and refinement of the XML calculus. On the
other hand, Rossberg et al. proposed the F-ing method [42] to encode the ML module system using
System Fω [3] rather than dependent types. Following the F-ing method, 1ML was proposed by
Rossberg [41] in which core ML and modules are collapsed into one language. Compared with Ei,
the calculi in this kind of work are more expressive due to the use of powerful type systems, where
type declarations and abstract types are typically supported. However, expressions, declarations,
and modules are separate in the syntax. In contrast, we demonstrate a new approach to enable a
simple form of first-class modules via a unified syntax in our work. A variety of entities, including
environments, records, declarations, and modules, are simply expressions in Ei.

Implicit calculi. Implicits are a mechanism for implicitly passing arguments based on their types,
which are supported in Scala as a generic programming mechanism to reduce boilerplate code.
Oliveira et al. [11] investigated the connection between Haskell type classes and Scala implicits. They

ECOOP 2023

21:24 Dependent Merges and First-Class Environments

showed that many extensions of the Haskell type class system can be encoded using implicits. After
that, Oliveira et al. [12] synthesized the key ideas of implicits formally in a general core calculus that
is called the implicit calculus. The implicit calculus supports a number of source language features
that are not supported by type classes. In implicit calculi there are two kinds of contexts and/or
environments: there are regular contexts (and environments) tracking variable bindings; and there
is also an implicit environment, which tracks values that can be used to provide implicit arguments
automatically. In Ei, we borrow the notion of a query, which enables type-based lookups on implicit
environments, from the implicit calculus. While queries are used to query implicit environments by
type in the implicit calculus, queries in Ei are applied directly to runtime environments and there is
no distinction between implicit and regular environments.

Rouvoet [43] extended the work of Oliveira et al. and showed that the ambiguous resolution from
the implicit calculus is undecidable. Following up on the earlier work on the implicit calculus [12],
Schrijvers et al. [46] reformalized the ideas of implicits and presented a coherent and type-safe
formal model, which supports first-class overlapping implicits and higher-order rules. Moreover,
a more expressive unification-based algorithmic resolution, which is closely related to the idea of
propositions as types [50], is described. While a highly complex mechanism is imposed to ensure
coherence and the semantics is given by elaboration in their work, in Ei we adopt a TDOS to utilize
the type information for guiding reduction and to enable determinism in a natural way. Odersky
et al. [31] proposed the SI calculus. The SI calculus generalizes implicit parameters in Scala to
implicit function types that have the form of T?→ T, which provides a way to abstract over the
contexts consisting of running code. The idea of this generalization was inspired by an early draft
of Schrijvers et al.’s work. Unlike the work of Schrijvers et al. and our work, SI lacks unambiguity.
Thus a disambiguation scheme is needed in the implementation. While forms of implicit contextual
abstraction are offered in the implicit calculi above, a form of contextual abstraction is also supported
in Ei. Indeed, since environments are first-class values in Ei, one can easily abstract over the contexts
by using abstractions. More recently, Marntirosian et al. [28] added modus ponens to subtyping to
make resolution a special case of subtyping and to enable implicit first-class environments. Unlike Ei,
the runtime environments in their work are still second class.

The merge operator. The merge operator was firstly proposed by Reynolds in the Forsythe
language [38] to add the expressiveness for calculi with intersection types. Reynolds’ merge operator
is quite restrictive and does not allow, for instance, overloaded functions. Since then, several other
researchers [8, 15, 32, 33] have removed restrictions and shown more applications of the merge
operator. Dunfield [15] presents a powerful calculus with an unrestricted merge operator and an
elaboration semantics that can encode various language features. While the elaboration semantics is
type-safe, determinism or coherence [39] cannot be ensured. To enable determinism, a disjointness
restriction on merges has been proposed in the work of Oliveira et al. [32]. In this work we borrow the
idea of merges, intersection types and disjointness from previous work on the merge operator. Unlike
previous work, our merges are dependent and Ei has operators to manipulate first-class environments
that are not available in earlier calculi with the merge operator. In previous calculi, environments are
not first class and the only operators supported on merges are concatenation and restriction.

Staged calculi and modal logic. Staging is a technique to separate the computations of a program,
such that abstraction can be realized without loss of efficiency. Davies and Pfenning [14] proposed a
type system that captures staged computation based on the intuitionistic variant of the modal logic
S4 [35]. The modal necessity operator □ is introduced, and □A represents the type of code that will
be evaluated in an upcoming stage. At the term level, expressions of type □A have the form box(e).
Corresponding to the modal rule of necessitation, box(e) has type □A if e has type A in the empty

J. Tan, B. C. d. S. Oliveira 21:25

context. Later, after this work, the box construct is generalized by Nanevski et al. in the work of
contextual modal type theory [30]. In this work, the box construct has the form box(Ψ.e) where Ψ is
a context and e can utilize the information in Ψ. The construct box(Ψ.e) is similar to e1 ▷ e2 in Ei in
the sense that the context Ψ shadows the current context. Both constructs capture the dependence
of expressions on contexts, in effect modelling data injection. However, since Ψ is a context, e in
box(Ψ.e) can only utilize type information, whereas in e1 ▷ e2, e2 relies on the concrete environment
information from the expression e1 directly. Furthermore, in modal type theory contexts Ψ are defined
in the usual way and are not types, nor are first class in the language. In contrast, contexts are types in
Ei, and environments are first class values.

Abstract machines. Abstract machines, such as the SECD machine [25], Krivine’s machine, the
categorical abstract machine [10], and the CEK machine [16], are state transition systems that serve as
a basis for the implementation of functional languages. Typically, a state in abstract machines is a tuple
that contains an expression, an environment, and some other entities (such as stack and continuation)
for reduction. Similarly, in Ei the semantics is an environment-based semantics, and closures are used
to keep environments around during the reduction. However, abstract machines are models for lambda
calculus, and thus they are not aimed at providing languages with first-class environments. In contrast,
the Ei calculus supports first-class environments and operators that manipulate environments.

7 Conclusion

In this paper, we have presented a statically typed calculus called Ei, that supports the creation,
reification, reflection, concatenation and restriction of first-class environments. The Ei calculus
borrows disjoint intersection types and a merge operator from the λi [32] calculus, but employs them
to model environments. In Ei, intersection types are used to model contexts, and disjointness is
imposed to model (and generalize) the uniqueness of variables in an environment. However, unlike
previous work, merges in Ei are dependent, which enables modelling dependent declarations. From
implicit calculi [12,31,46], Ei borrows queries to synthesize the full current context (at the type level)
and the entire current environment (at the term level), and to enable type-based lookups. We prove
the determinism and type-soundness of Ei. Furthermore, we show that the type system of λi can be
encoded by Ei via a type-directed translation. In other words, standard variables, lambda abstractions,
and non-dependent merges are all encodable in Ei, enabling the Ei calculus to subsume λi. We also
study an extension of the calculus with fixpoints. The Ei calculus, as well as the extension, and all the
proofs presented in this paper have been formalized using Coq theorem prover.

As for future work, we are interested in extensions with more features. For example, we plan to
investigate how to incorporate BCD subtyping [4]. With the merge operator and BCD subtyping, a
powerful form of composition called nested composition [6] can be enabled. We would also like to
extend the current calculus with polymorphism and show that abstract types can be encoded with the
extended calculus. In this setting, since type variables could occur in contexts, we plan to use labels
to model type variables, just like what we have done for term variables.

References

1 Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substitutions. In Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 31–46, 1989.

2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European Symposium
on Programming (ESOP), 2017.

3 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154, 1991.
doi:10.1017/s0956796800020025.

ECOOP 2023

https://doi.org/10.1017/s0956796800020025

21:26 Dependent Merges and First-Class Environments

4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and the
completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.

5 Xuan Bi and Bruno C. d. S. Oliveira. Typed First-Class Traits. In European Conference on Object-Oriented
Programming (ECOOP), 2018.

6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition. In European
Conference on Object-Oriented Programming (ECOOP), 2018.

7 Luca Cardelli. Program fragments, linking, and modularization. In Peter Lee, Fritz Henglein, and
Neil D. Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January
1997, pages 266–277. ACM Press, 1997. doi:10.1145/263699.263735.

8 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions with
subtyping. In Conference on LISP and Functional Programming, 1992.

9 Coq development team. The coq proof assistant. http://coq.inria.fr/.
10 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine. Sci. Comput.

Program., 8(2):173–202, 1987. doi:10.1016/0167-6423(87)90020-7.
11 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits.

In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 341–360. ACM, 2010. doi:
10.1145/1869459.1869489.

12 Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi. The implicit
calculus: a new foundation for generic programming. In Jan Vitek, Haibo Lin, and Frank Tip, editors,
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, pages 35–44. ACM, 2012. doi:10.1145/2254064.2254070.

13 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In International
Conference on Functional Programming (ICFP), 2000.

14 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555–604,
2001. doi:10.1145/382780.382785.

15 Jana Dunfield. Elaborating intersection and union types. Journal of Functional Programming (JFP),
24(2-3):133–165, 2014.

16 Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-order languages. In
Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages,
Munich, Germany, January 21-23, 1987, pages 314–325. ACM Press, 1987. doi:10.1145/41625.
41654.

17 Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. R melts brains: An
ir for first-class environments and lazy effectful arguments. In Proceedings of the 15th ACM SIGPLAN
International Symposium on Dynamic Languages, DLS 2019, pages 55–66. Association for Computing
Machinery, 2019.

18 David Gelernter, Suresh Jagannathan, and Thomas London. Environments as first class objects. In
Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages,
Munich, Germany, January 21-23, 1987, pages 98–110. ACM Press, 1987. doi:10.1145/41625.41634.

19 Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing. In
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 123–137, 1994.

20 Robert Harper and John C. Mitchell. On the type structure of standard ML. ACM Trans. Program. Lang.
Syst., 15(2):211–252, 1993. doi:10.1145/169701.169696.

21 Xuejing Huang and Bruno C. d. S. Oliveira. A type-directed operational semantics for a calculus
with a merge operator. In Robert Hirschfeld and Tobias Pape, editors, 34th European Conference on
Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 26:1–26:32, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/13183, doi:10.4230/
LIPIcs.ECOOP.2020.26.

https://doi.org/10.1145/263699.263735
http://coq.inria.fr/
https://doi.org/10.1016/0167-6423(87)90020-7
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/2254064.2254070
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/41625.41634
https://doi.org/10.1145/169701.169696
https://drops.dagstuhl.de/opus/volltexte/2020/13183
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26

J. Tan, B. C. d. S. Oliveira 21:27

22 Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. Taming the merge operator. Journal of
Functional Programming, 31:e28, 2021. doi:10.1017/S0956796821000186.

23 Suresh Jagannathan. Dynamic modules in higher-order languages. In Henri E. Bal, editor, Proceedings of
the IEEE Computer Society 1994 International Conference on Computer Languages, May 16-19, 1994,
Toulouse, France, pages 74–87. IEEE Computer Society, 1994. doi:10.1109/ICCL.1994.288391.

24 Suresh Jagannathan. Metalevel building blocks for modular systems. ACM Trans. Program. Lang. Syst.,
16(3):456–492, 1994. doi:10.1145/177492.177578.

25 P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964. doi:10.1093/
comjnl/6.4.308.

26 Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bindings across multiple
lexical scopes. In Mary S. Van Deusen and Bernard Lang, editors, Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South
Carolina, USA, January 1993, pages 479–492. ACM Press, 1993. doi:10.1145/158511.158706.

27 David B. MacQueen. Modules for standard ML. In Robert S. Boyer, Edward S. Schneider, and Guy
L. Steele Jr., editors, Proceedings of the 1984 ACM Conference on LISP and Functional Programming,
LFP 1984, Austin, Texas, USA, August 5-8, 1984, pages 198–207. ACM, 1984. doi:10.1145/800055.
802036.

28 Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias. Resolution as
intersection subtyping via modus ponens. Proc. ACM Program. Lang., 4(OOPSLA):206:1–206:30, 2020.
doi:10.1145/3428274.

29 James S. Miller and Guillermo Juan Rozas. Free variables and first-class environments. LISP Symb.
Comput., 4(2):107–141, 1991.

30 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM
Transactions on Computational Logic (TOCL), 9(3):1–49, 2008.

31 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki.
Simplicitly: foundations and applications of implicit function types. Proc. ACM Program. Lang., 2(POPL).

32 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In International
Conference on Functional Programming (ICFP), 2016.

33 Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD thesis,
University of Pennsylvania, 1991.

34 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry: essays on
combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

35 Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publications, 2006.
36 Christian Queinnec and David De Roure. Sharing code through first-class environments. In Robert Harper

and Richard L. Wexelblat, editors, Proceedings of the 1996 ACM SIGPLAN International Conference
on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26, 1996, pages
251–261. ACM, 1996. doi:10.1145/232627.232653.

37 Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. Union Types with Disjoint
Switches. In 36th European Conference on Object-Oriented Programming (ECOOP 2022), Leibniz
International Proceedings in Informatics (LIPIcs), pages 25:1–25:31, 2022.

38 John C Reynolds. Preliminary design of the programming language forsythe. Technical report, Carnegie
Mellon University, 1988.

39 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in Computer
Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

40 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages, pages
173–233. Birkhauser Boston Inc., 1997.

41 Andreas Rossberg. 1ml - core and modules united. J. Funct. Program., 28:e22, 2018. doi:10.1017/
S0956796818000205.

42 Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules. Journal of functional programming,
24(5):529–607, 2014.

43 AJ Rouvoet. Programs for free: Towards the formalization of implicit resolution in scala. 2016.

ECOOP 2023

https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1109/ICCL.1994.288391
https://doi.org/10.1145/177492.177578
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1145/158511.158706
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/3428274
https://doi.org/10.1145/232627.232653
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796818000205

21:28 Dependent Merges and First-Class Environments

44 Masahiko Sato, Takafumi Sakurai, and Rod M. Burstall. Explicit environments. Fun-
dam. Informaticae, 45(1-2):79–115, 2001. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi45-1-2-05.

45 Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply typed context calculus with
first-class environments. J. Funct. Log. Program., 2002, 2002. URL: http://danae.uni-muenster.
de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf.

46 Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. COCHIS: stable and
coherent implicits. J. Funct. Program., 29:e3, 2019. doi:10.1017/S0956796818000242.

47 Shin-ya Nishizaki. Simply typed lambda calculus with first-class environments. Publications of the
Research Institute for Mathematical Sciences, 30(6):1055–1121, 1994.

48 Christopher A Stone and Robert Harper. Extensional equivalence and singleton types. ACM Transactions
on Computational Logic (TOCL), 7(4):676–722, 2006.

49 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
50 Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, 2015. doi:10.1145/2699407.
51 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. Compositional programming. ACM Transactions

on Programming Languages and Systems (TOPLAS), 43(3):1–61, 2021.

http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
https://doi.org/10.1017/S0956796818000242
https://doi.org/10.1145/2699407

J. Tan, B. C. d. S. Oliveira 21:29

A Some Relations

A.1 Algorithmic Disjointness

A ⊓ B (COSTs)

Cost-int

Int ⊓ Int

Cost-andl
A ⊓C

A & B ⊓C

Cost-andr
B ⊓C

A & B ⊓C

Cost-randl
A ⊓ B

A ⊓ B & C

Cost-randr
A ⊓C

A ⊓ B & C

Cost-arr
B ⊓ D

A→ B ⊓C → D

Cost-rcd
A ⊓ B

{l : A} ⊓ {l : B}

Here we define a relation called COSTs (Common Ordinary Super Types), which is used to define
algorithmic disjointness as following:

▶ Definition 21 (Algorithmic Disjointness). A ∗a B ≡ ¬(A ⊓ B)

The algorithmic disjointness is equivalent to the specification of disjointness (Definition 1).

▶ Theorem 22 (Disjointness Equivalence). A ∗a B if and only if A ∗ B.

A.2 Top-like Types

⌉A⌈ (Top-like Types)

TL-top

⌉Top⌈

TL-and
⌉A⌈ ⌉B⌈

⌉A & B⌈

TL-arr
⌉B⌈

⌉A→ B⌈

TL-rcd
⌉B⌈

⌉{l : B}⌈

A.3 Value Generator

▶ Definition 23 (Value Generator). A↑ generates a value for top-like type A.

Top↑ = ⊤

(A→ B)↑ = ⊤ ▷ ({B↑}• : A→ B)

(A & B)↑ = A↑ # B↑

{l : A}↑ = {l = A↑}

B Fixpoints

In this section, we discuss an extension of Ei with fixpoints.

Expressions eF . . . | fix A.e

Values vF . . . | v ▷ (fix A.e : B)

ECOOP 2023

21:30 Dependent Merges and First-Class Environments

Γ ⊢ e⇔ A (Extended Bidirectional Typing)

Typ-fix
Γ ∗ A Γ& A ⊢ e⇐ A

Γ ⊢ fix A.e⇒ A

v ↪→A v′ (Extended Casting)

Casting-fix
B <: C ¬⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C v ▷ (fix A.e : C)

Casting-fixtl
B <: C ⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C C↑

v ⊢ e ↪→ e′ (Extended Reduction)

Step-fix

v ⊢ fix A.e ↪→ v ▷ (fix A.e : A)

Step-fixbeta

v ⊢ (v2 ▷ fix C.e : A→ B) v1 ↪→ (v2 # (v2 ▷ fix C.e : C)) ▷ (e : A→ B) v1

Step-fixproj

v ⊢ (v2 ▷ fix A.e : {l : B}).l ↪→ (v2 # (v2 ▷ fix A.e : A)) ▷ (e : {l : B}).l

Figure 6 Extended typing, casting, and reduction rules for Ei with fixpoints.

Syntax and typing. Expressions are extended with fixpoint fix A.e in which A is the type annotation.
For values, closures are extended with boxes containing a fixpoint. Note that for fix A.e in a closure,
an additional type annotation B is required. Rule Typ-fix is the typing rule for fixpoints, which is
shown at the top of Figure 6. To make fix A.e well-typed, the body e needs to be checked under the
context extended with A. Similarly to the typing rule for abstractions, there is also a disjointness
condition Γ ∗ A to prevent ambiguities.

Casting and reduction. The extended casting and reduction rules for fixpoints are shown in
Figure 6. Basically, v ▷ (fix A.e : B) is cast with a supertype C and the result depends on whether C
is top-like or not. If C is not a top-like type, then the casting result is v ▷ (fix A.e : C). Otherwise,
v ▷ (fix A.e : B) is cast to a value generated by the value generator for C. This is similar to the
treatment of casting abstractions for ensuring determinism. Note that C is required to be ordinary in
rule Casting-fix and rule Casting-fixtl. This is to avoid overlapping with rule Casting-and when C
is an intersection type.

For reduction, there are three rules for fixpoints. Rule Step-fix transforms fix A.e to a closure by
assigning the current environment and giving an additional annotation to it. When v2 ▷fix C.e : A→ B
is applied to value v1, rule Step-fixbeta “unwinds” the closure in the sense that the closure is put
into the environment. In this way, when the application (e : A → B) v1 is evaluated, it can access
and utilize the closure containing the fixpoint again. Note that the closure put in the environment is
v2 ▷ fix C.e : C instead of v2 ▷ fix C.e : A → B. This is to ensure that the body e of the fixpoint is

J. Tan, B. C. d. S. Oliveira 21:31

well-typed under the same context Γ& C for type preservation. Similarly, when a record projection is
required, rule Step-fixproj “unwinds” the closure, and evaluates (e : {l : B}).l under the environment
that contains the fixpoint information.

Determinism and type-soundness The extension with fixpoints retains the properties of determ-
inism and type-soundness. All the metatheory does not require significant changes for this extension
and is formalized in the Coq theorem prover.

ECOOP 2023

	1 Introduction
	2 Overview
	2.1 Background
	2.2 Limitations of Non-Dependent Merges
	2.3 Key Ideas

	3 The Ei Calculus
	3.1 Syntax
	3.2 Subtyping and Disjointness
	3.3 Bidirectional Typing
	3.4 Semantics

	4 Determinism and Type Soundness
	4.1 Determinism
	4.2 Progress and Preservation

	5 Encoding of Lambda-i
	5.1 Syntax
	5.2 Type-Directed Translation of Lambda-i to Ei

	6 Related Work
	7 Conclusion
	A Some Relations
	A.1 Algorithmic Disjointness
	A.2 Top-like Types
	A.3 Value Generator

	B Fixpoints

